
A new type of solution of the Schrödinger equation on a self-similar fractal potential

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2006 J. Phys. A: Math. Gen. 39 L559

(http://iopscience.iop.org/0305-4470/39/37/L01)

Download details:

IP Address: 171.66.16.106

The article was downloaded on 03/06/2010 at 04:49

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/39/37
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 39 (2006) L559–L562 doi:10.1088/0305-4470/39/37/L01

LETTER TO THE EDITOR

A new type of solution of the Schrödinger equation on
a self-similar fractal potential

N L Chuprikov and O V Spiridonova

Tomsk State Pedagogical University, 634041, Tomsk, Russia

Received 14 July 2006, in final form 26 July 2006
Published 29 August 2006
Online at stacks.iop.org/JPhysA/39/L559

Abstract
Scattering of a quantum particle by a self-similar fractal potential on a Cantor
set is investigated. We present a new type of solution of the functional equation
for the transfer matrix of this potential, which was derived earlier from the
Schrödinger equation.

PACS numbers: 03.65.Ca, 03.65.Xp

In this letter, we address the model [1, 2] of scattering a quantum particle by a self-similar
fractal potential (SSFP) given on a Cantor set. This scattering problem is, perhaps, the most
simple one to allow studying the influence of the scale invariance of ideal deterministic fractals
on physical processes in continuous media to involve such fractal structures.

Note that the sharp attenuations, found in [1], in the spectrum of probability waves
transmitted through this ideal fractal potential have also been observed experimentally (see
[3]) in the transmission spectrum of electromagnetic waves propagating through a real fractal
medium (see a numerical modelling for the corresponding pre-fractals in [4]). However, the
problem is that the model [1, 2] remains incomplete in some respects. In this letter, we present
a new type of solution to the Schrödinger equation on the SSFP, in addition to two types
presented in [1, 2].

So, let V (x) be an SSFP on the generalized Cantor set in the interval [0, L]; each level
of the SSFP consists of N (N � 2) SSFPs of the next level whose width is α times smaller
than that of the former (see [2]). Let W be the power of the SSFP, that is, its total area:
W = ∫ ∞

−∞ V (x) dx. In line with [1, 2], for a particle with a given energy E (E = h̄2k2/2m),
the transfer matrix Z(φ) (φ = kL) of the SSFP must obey the functional equation

Z(φ) = Z(αφ) [D(γ φ)Z(αφ)]N−1 ,

Z(φ) =
(

q(φ) p(φ)

p∗(φ) q∗(φ)

)
, D(φ) =

(
eiφ 0
0 e−iφ

)
,

q(φ) = 1√
T (φ)

exp [−iJ (φ)] , p(φ) =
√

R(φ)

T (φ)
exp

[
i
(π

2
+ F(φ)

)]
.

(1)
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Figure 1. The ln(φ) dependence of ln(R/T ) for s = 0.5, c = 0.001 and ω = 10; bold full curve:
N = 2; thin full curve: N = 4.

Here γ = α−N
α(N−1)

, R = 1 − T , and T (φ), J (φ) and F(φ) are, respectively, the transmission
coefficient and phase characteristics of the SSFP; F = 0 for the SSFP barriers and F = π for
the SSFP wells (see [2]).

As it has turned out, equation (1) does not uniquely determine the transfer matrix of the
SSFP. Two different types of solutions of this equation have been presented in [1, 2]. Recall
that the first type was obtained for any values of W,α and N to characterize the SSFP. In this
case, for small values of φ,

√
T (φ) ∼ y(φ) ∼ φs , where s is the fractal dimension of the

Cantor set: s = ln(N)/ ln(α), y = π
2 − J . The second type of solutions exists only for the

SSFP barriers, if W = 3Nh̄2

mL
. For this type,

√
T (φ) ∼ y(φ) ∼ φ for small values of φ.

In this letter, we present a new (third) type of solutions (found by Chuprikov), with a
cardinally different behaviour of the tunnelling parameters in the asymptotic region. Namely,
in this case, for small values of φ we have

T (φ) = {1 + cosh2[ω(ln(φ))] sinh2(cφ−s)}−1,

J (φ) = arctan{sinh[ω(ln(φ))] tanh(cφ−s)},
(2)

where c is a nonzero constant, and ω is a nonzero real-valued function to obey the condition
ω[ln(φ)] = ω[ln(φ) + ln(α)].

To extend this solution onto the whole ln(φ)-axis, one has to use the recurrence relations
(18) and (19) presented in [2]. As in [1, 2], we display here ln(R/T ) versus ln(φ) (see
figures 1 and 2).

In the numerical study we took the function ω(φ) to be constant. Our calculations showed
that in this case varying the parameter ω, in a wide region, does not practically influence the
tunnelling parameters of the SSFP. A simple analysis shows that the tunnelling parameters are
non-differentiable functions at point φ = 0, when ω depends on φ.

As is seen from figures 1 and 2, there are three regions on the ln(φ)-axis, with a
qualitatively different dependence of ln(R/T ):
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Figure 2. The ln(φ) dependence of ln(R/T ) for N = 3, α = 13 and ω = 10; broken curve:
c = 0.1; thin full curve: c = 0.01; bold full curve: c = 0.001.

• In the left region

ln ln

(
R

T

)
∼ ln(2|c|) − s ln(φ).

• In the middle region

ln

(
R

T

)
∼ −2 ln(φ).

• In the right region

ln(R̃/T¨̂) ∼ −2s ln(φ),

where R̃/T is the envelop of R(φ)/T (φ).

Note that the right region appears for all three types of solutions, but the middle region
appears only for the third and second types (see [2]). As regards the left one to follow from
(2), such a behaviour is a distinctive feature of the third type of solutions.

It is also important to note here that, for the solutions of the first and third types, the phase
path of the wave inside the out-of-barrier regions (i.e., in the regions where the potentials are
equal to zero) is infinitesimally small in comparison with the wave path in the barrier regions.
This feature distinguishes these types of solutions from the second one.

So, there are at least three types of the transfer matrices of the SSFP. As is seen, though
all of them are nonzero only on the Cantor set, i.e., the set of zero measure, we deal with
different potentials. The Cantor set is a non-countable one, and thus it yet provides a much
enough room for setting potentials with such different scattering properties.

Of course, in this case, it is of great importance to find the sequences of pre-fractals to
lead to the SSFPs, when the generation number of pre-fractals tends to infinity. Additionally,
another open question regarding the model is that the parameters to enter the third type of
solutions remain to be connected to the SSFP parameters.
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